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Abstract
Precise control of the amplitude of protein kinase C (PKC) signalling is essential for cellular homoeostasis, and
disruption of this control leads to pathophysiological states such as cancer, neurodegeneration and diabetes.
For conventional and novel PKC, this amplitude is meticulously tuned by multiple inputs that regulate the
amount of enzyme in the cell, its ability to sense its allosteric activator diacylglycerol, and protein scaffolds
that co-ordinate access to substrates. Key to regulation of the signalling output of most PKC isoenzymes is the
ability of cytosolic enzyme to respond to the membrane-embedded lipid second messenger, diacylglycerol,
in a dynamic range that prevents signalling in the absence of agonists but allows efficient activation in
response to small changes in diacylglycerol levels. The present review discusses the regulatory inputs
that control the spatiotemporal dynamics of PKC signalling, with a focus on conventional and novel PKC
isoenzymes.

Introduction
The protein kinase C (PKC) family transduces a multitude
of signals that control diverse cellular processes such as
proliferation, migration, invasion, differentiation, apoptosis,
transcription and translation. Therefore aberrant PKC
activity or localization has been linked to numerous diseases,
most notably cancer, neurodegeneration and diabetes [1]. This
serine/threonine kinase family belongs on the AGC kinase
branch of the kinome [2] and comprises nine genes that
share a similar architecture with an N-terminal regulatory
moiety and a C-terminal kinase domain (Figure 1). PKCs are
classified according to the second messengers that regulate
their activity. Conventional PKCs (cPKCs: α, β and γ )
contain tandem C1 domains that bind diacylglycerol (DAG)
and phosphatidylserine (PS) and a C2 domain that binds
anionic phospholipids, including phosphatidylinositol 4,5-
bisphosphate (PIP2), in a Ca2 + -dependent manner. Novel
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PKCs (nPKCs: δ, ε, η, θ ) contain tandem C1 domains
that bind DAG and a novel C2 domain that is Ca2 + -
unresponsive and does not assist in membrane binding.
Atypical PKCs (aPKCs: ι and ζ ) have an atypical C1 domain
that does not bind DAG and lack a C2 domain altogether, but
instead contain a PB1 domain that mediates protein–protein
interactions. aPKCs and PKCα also contain a C-terminal
PDZ ligand that mediates protein–protein interactions and
thus affects scaffolding and localization of these isoenzymes.

Regulation by priming phosphorylation
Phosphorylation is absolutely critical (i) to render PKC in
a catalytically competent conformation and (ii) to protect
PKC from degradation [3]. In contrast with many other
kinases, the phosphorylation of PKC is constitutive and
thus its activity is not acutely regulated by phosphorylation.
Rather, cellular levels of PKC are directly regulated by
its phosphorylation. cPKCs and nPKCs are constitutively
phosphorylated at three conserved residues: the activation
loop, the turn motif and the hydrophobic motif [4] (Figure 1).
aPKCs are also phosphorylated at the activation loop and
turn motif, but contain a phosphomimetic glutamic acid at
the hydrophobic motif. The first priming phosphorylation on
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Figure 1 Domain composition of the three classes of PKC

Conventional PKCs (α, β and γ ) contain an N-terminal pseudosubstrate (green), tandem C1 domains (orange) that

bind diacylglycerol (DAG) and phosphatidylserine (PS), a C2 domain (yellow) that binds anionic phospholipids, including

phosphatidylinositol 4,5-bisphosphate (PIP2), in a Ca2 + -dependent manner and a C-terminal kinase domain (cyan). Novel

PKCs (δ, ε, η and θ) have a similar domain composition except that their C2 domain cannot bind Ca2 + or PIP2 and their C1B

domain has ∼100-fold higher affinity for DAG due to having a tryptophan residue at position 22 in the domain, as opposed

to a tyrosine residue as the C1B domain of cPKCs has [15]. Atypical PKCs (ζ and ι) have a protein-binding module, the PB1

domain, and an atypical C1 domain that cannot bind DAG. All PKCs are phosphorylated at three conserved sites: the activation

loop within the kinase domain and the turn and hydrophobic motifs within the C-terminal tail (except for atypical PKCs which

have a phosphomimetic Glu at the hydrophobic motif). The table on the right summarizes the second messengers that

bind to each of the classes of PKC, with + representing binding, + + representing binding with ∼100-fold higher affinity,

and − representing lack of binding.

PKC occurs at the activation loop within the kinase domain
and is catalysed by the phosphoinositide-dependent kinase,
PDK-1 [5,6]. Phosphorylation at this site properly aligns
residues within the active site for catalysis, an event that
induces two tightly-coupled and ordered phosphorylations
on the C-terminal tail: phosphorylation at the turn motif
and intramolecular autophosphorylation at the hydrophobic
motif. For cPKCs and nPKCs such as PKCε, but not
PKCδ, these phosphorylation events require mTORC2;
however, whether mTOR is the direct kinase for this site
in cells remains controversial [7–10]. Phosphorylation at the
hydrophobic motif controls the stability of the enzyme.
Indeed, dephosphorylation of this site is the first step
in the degradation of PKC as it destabilizes PKC and
promotes its degradation. The PH domain leucine-rich repeat
protein phosphatase (PHLPP) directly dephosphorylates the
hydrophobic motif of PKCs, an event that requires the PH
domain of PHLPP [11]. Thus loss of PHLPP in the cell leads
to an increase in steady state PKC levels. Conversely, PKC
levels are low in cells in which any of the phosphorylation
steps have been perturbed, such as by loss of mTORC2 or
PDK-1 [8,12]. Thus priming phosphorylations regulate the
steady-state levels of PKC but not its acute agonist-dependent
activity; instead, the spatial and temporal dynamics of PKC
signalling are regulated by second messengers.

Regulation by second messengers
Although phosphorylated PKC is catalytically competent, an
autoinhibitory pseudosubstrate binds the substrate-binding
cavity to maintain PKC in an inactive conformation until the

appropriate second messengers bind. cPKCs are allosterically
activated by binding to two second messengers: Ca2 + and
DAG (Figure 2A). Binding of Ca2 + to the C2 domain targets
the kinase to the plasma membrane through (i) hydrophobic
interactions that drive binding to the membrane, and
(ii) electrostatic interactions with anionic phospholipids,
including PIP2, that contribute to retention of the C2 domain
onto membranes [13]. Once at the membrane, one of the
C1 domains of PKC is positioned to find and bind DAG,
an event that provides the necessary energy to expel the
pseudosubstrate and activate PKC [14]. nPKCs are activated
solely by DAG (Figure 2B), whereas aPKCs do not respond
to either of these second messengers and their activity is
instead regulated by protein–protein interactions.

Differential binding of second messengers to cPKCs
versus nPKCs leads to substantial differences in their
spatiotemporal dynamics of signalling. First, cPKCs and
nPKCs predominantly translocate to different membranes
(Figure 2). cPKCs translocate to, and are active at, the
plasma membrane because their Ca2 + -bound C2 domain
pre-targets them to the plasma membrane-localized lipid
PIP2, where they are retained following DAG binding [13]
(Figure 2A). nPKCs do not have a Ca2 + -sensing C2 domain
to pre-target them to the plasma membrane; instead, their
C1B domain has an approximately 100-fold higher affinity
for DAG due to the presence of a tryptophan residue at
position 22 in the domain, compared with the C1B domain
of cPKCs that contains a tyrosine residue at that position
(Figure 1) [15]. Consequently, nPKCs translocate to DAG-
rich endomembranes such as the Golgi (Figure 2B). Indeed,
impairing the Ca2 + -binding ability of the C2 domain of
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Figure 2 Regulation of conventional and novel protein kinase C

(A) Model showing the life cycle of conventional PKC (cPKC). (i) Unprimed cPKC is in a membrane-associated, open

conformation in which both its C1A and C1B domains are fully exposed. (ii) Upon priming phosphorylation at its activation

loop (pink circle) by PDK-1, followed by phosphorylation at the turn motif (orange circle) and the hydrophobic motif

(green circle), cPKC matures into a closed conformation in which both the C1A and C1B domains become masked, the

pseudosubstrate binds the substrate-binding site, and the primed enzyme localizes to the cytosol. This masking of the C1

domains prevents pre-targeting of cPKC to membranes in the absence of agonist-evoked increases in DAG, thus preventing

basal signalling. (iii) In response to agonists that promote PIP2 hydrolysis, cPKC is recruited to the plasma membrane in

a Ca2 + -dependent manner. (iv) This pre-targeting to the plasma membrane facilitates binding to DAG, predominantly

via the C1B domain, which expels the pseudosubstrate from the substrate-binding cavity, thereby activating PKC. (v)

Dephosphorylation of activated cPKC allows it to regain the open conformation of unprimed PKC. (vi) Ubiquitination of cPKCs

leads to its proteasome-mediated degradation, thus terminating signalling. (B) Model showing life cycle of novel PKC (nPKC).

(i) Unprimed nPKC is also in an open conformation that associates with membranes. (ii) Priming phosphorylations induce a

closed conformation with both C1 domains masked. (iii) In response to agonists that produce DAG, nPKC is recruited to and

activated at the DAG-rich Golgi via its higher DAG affinity C1B domain (due to the presence of a tryptophan residue at position

22 within the domain). (iv) Activated nPKC is dephosphorylated, (v) ubiquitinated and degraded. (vi) The novel PKCδ can

also be activated by tyrosine phosphorylation and caspase cleavage. (vii) Nuclear-localized PKCδ can induce apoptosis.
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PKCα forces it to the Golgi instead, as the C1 domain
interaction becomes the dominant force [13]. Secondly, the
kinetics of activation differ between cPKCs and nPKCs.
cPKCs display rapid but transient activity at the plasma
membrane that tracks with the initial Ca2 + release [16].
In fact, the kinetics of cPKC activation closely follow
Ca2 + levels [17]. PKCβII exhibits oscillatory translocation
to the plasma membrane in response to Ca2 + oscillations
produced by histamine stimulation of HeLa cells. This, in
turn, leads to oscillatory phosphorylation of membrane-
localized substrates that tracks Ca2 + levels with a slight
lag. nPKCs, on the other hand, are activated with slower
kinetics because they do not respond to this fast Ca2 + release
[16]. Thirdly, the duration of PKC activity, which is partially
controlled by the persistence of the second messengers at a
particular subcellular location, also differs among the PKCs.
For example, DAG levels are more sustained at the Golgi than
the plasma membrane, leading to prolonged nPKC activity at
the Golgi compared with the short-lived cPKC activity at the
plasma membrane [16]. Thus second messengers precisely
dictate the kinetics, magnitude, duration, and location of
cPKC and nPKC activity and are responsible for the apparent
differences between them.

PKC levels, and thus PKC activity, are exquisitely con-
trolled by various mechanisms both under basal conditions
and after agonist stimulation. Under basal conditions, an E3
ligase for PKC, RING-finger protein that interacts with C
kinase (RINCK), controls the amplitude of PKC signalling
by regulating its levels [18]. RINCK interacts with the
C1A domain of PKC and induces its ubiquitination and
thus its degradation. PKCα activity was also shown to be
regulated, under basal conditions, through an interaction
with DAG kinase ζ , which prevents its activation by
locally metabolizing DAG [19]. Only under stimulated
conditions in which enough DAG is locally produced is
PKCα activated, allowing it to phosphorylate DAG kinase ζ ,
thereby causing disassociation of the two proteins. However,
agonist stimulation ultimately leads to termination of PKC
signalling through various mechanisms. For example, PKC
signalling is quickly terminated by the clearance of the
respective second messengers, but also by agonist-induced
down-regulation of the enzyme. Several mechanisms control
this down-regulation. First, the peptidyl-prolyl isomerase
Pin1 controls the isomerization of the turn motif (LTP),
an event that is required to allow dephosphorylation of
this site [20]. Thus Pin1 converts PKC into a down-
regulation-capable species. Secondly, this species of active
PKC can be dephosphorylated by PHLPP (hydrophobic
motif) causing it to be shunted to the detergent-insoluble
fraction where it is further dephosphorylated by okadaic
acid-sensitive phosphatases such as protein phosphatase
2A (activation loop and turn motif), ubiquitinated and
ultimately degraded by the proteasome [21]. Agonist-induced
proteasome-mediated degradation of PKCα can, however,
also occur via ubiquitination of plasma membrane-localized,
fully primed PKC [22,23]. Additionally, phosphorylated
PKCα can also be internalized through lipid raft-mediated

endocytic pathways and degraded by the lysosome [23,24].
These mechanisms desensitize PKC signalling by regulating
PKC levels, thus providing another means of exquisite
control.

Regulation independent of second
messengers
Particular cPKCs and nPKCs can also be activated independ-
ently of second messengers, adding to the complexity of PKC
signalling. For example, certain PKCs can be activated by
the accumulation of reactive oxygen species, which are often
elevated in diseases such as cancer, cardiovascular disease, and
neurodegeneration [25]. Specifically, H2O2 causes oxidation
of cysteine residues within the C1B domain of PKCγ ,
inducing conformational changes that release PKCγ from
its scaffold, leading to its translocation to the plasma
membrane and subsequent DAG-independent activation
[26,27]. PKCδ is phosphorylated at multiple tyrosine residues
by Src family kinases in response to acute stimulation
of cells by H2O2, epidermal growth factors, or platelet-
derived growth factor. Tyrosine phosphorylation can induce
the DAG-independent activation of PKCδ, in the absence
of membrane translocation, and can alter its subcellular
localization [28,29]. For example, tyrosine phosphorylation
of PKCδ at Tyr64 and Tyr155 in response to apoptotic stimuli,
such as H2O2 and etoposide, induces a conformational
change that exposes its nuclear localization sequence and
chaperone-binding site, allowing its import into the nucleus
where it can induce apoptosis [30]. H2O2-induced tyrosine
phosphorylation at Tyr311 has also been proposed to activate
PKCδ by inducing caspase-3 cleavage between its regulatory
and catalytic domains, resulting in a nuclear-localized,
uninhibited catalytic domain [31]. Therefore these agonist-
induced phosphorylations and conformational changes can
activate PKCs independently of second messengers by either
releasing PKCs from scaffolds or by exposing binding sites
for scaffolds to bind.

Regulation by conformational changes
PKCs are under precise conformational control, particularly
during maturation, adding another level of regulation. When
first synthesized, PKC is in an open conformation that has
both the C1A and C1B domains exposed (Figure 2). Upon
phosphorylation at its three priming sites, PKC adopts a
closed conformation that masks its C1 domains such that the
lower affinity C1B domain is the predominant DAG binder.
This conformational change optimizes PKC’s dynamic range
of signalling such that it is not activated by basal DAG but
can readily detect and be activated by a small, local increase in
DAG [32]. Phosphorylation of the C-terminal tail is critical in
maintaining PKC in a closed inactive conformation, as lack of
phosphorylation at these sites leads to PKC remaining in an
open exposed conformation. Binding to its respective second
messengers leads to another conformational change that
results in expulsion of the autoinhibitory pseudosubstrate
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and subsequent activation of PKC [35]. Similar to cPKCs,
the pseudosubstrate and C1 domain of the aPKCζ also
inhibit its activity through intramolecular interactions with
the substrate-binding site and the αC helix, respectively
[33,34].

Thus PKC undergoes conformational changes both during
its maturation and during its activation in order to finely tune
its activity.

Regulation by scaffolding
Scaffolding also plays an integral part in determining the
precise location, duration and amplitude of PKC activity, as
well as in establishing substrate specificity. Considering that
there are multiple PKC isoenzymes expressed in the same
cell that are activated by the same stimuli, scaffolds provide
a level of functional selectivity. Among the PKC scaffolds
are receptors for activated C-kinase (RACK) [36–38], 14-3-3
proteins [39,40] and A-kinase-anchoring proteins (AKAPs)
[41,42].

Particular scaffolds augment PKC signalling, whereas
others inhibit it. RACKs were the first scaffolds found to
associate with active PKC. For PKCβII, this interaction
occurs via its C2 domain and C-terminal tail and it
stabilizes PKC’s active conformation, thus enhancing its
activity towards co-scaffolded substrates [36–38]. The
phosphoserine/threonine binding protein 14-3-3 binds to a
pair of phosphoserines within the hinge region of PKCε,
leading to its activation [39]. However, scaffolds can also be
inhibitory towards PKC by sequestering it away from its
substrates or maintaining it in an inactive conformation. For
example, in lens epithelial cells, 14-3-3ε binds PKCγ ’s C1B
domain and controls both its activity and localization, thus
regulating gap junction activity [40]. A subset of AKAPs,
which were first identified to bind protein kinase A, has been
shown to bind PKC. AKAP12 binds to and attenuates PKCα

and PKCδ signalling, thereby preventing senescence and
oncogenic transformation [41]. Similarly, AKAP5 inhibits
PKC activity by binding to its catalytic pocket [42].

Scaffolds can also regulate the duration of PKC activity
towards a substrate by co-scaffolding a phosphatase of
the substrate. The phosphatase can thus rapidly dephos-
phorylate and attenuate signalling downstream of PKC
substrates. Such an example is the co-ordination of PKC
and protein phosphatase 2B/calcineurin on AKAP79/150
at the postsynaptic density in neurons [43]. Another
AKAP (AKAP350/AKAP450) was proposed to act as a
scaffold for the maturation of PKC [44]. This AKAP only
associates with nascent PKCε at the Golgi/centrosome and
this complex disassembles following PKCε maturation by
phosphorylation. Interestingly, this complex also contains
protein phosphatase 2A [45], which dephosphorylates
PKC leading to its degradation. Perhaps PKC levels are
dynamically controlled on this scaffold through regulation
of its phosphorylation. Scaffolding of PKC also has clinical
relevance because scaffolds have been shown to change
the pharmacological profile of PKC. Specifically, ATP-

competitive inhibitors were found to be ineffective against
scaffolded PKC [42]. To explain how scaffolds amplify,
accelerate and insulate PKC signalling, Greenwald et al.
[46] proposed a stochastic state-switching model. In this
model, the complex containing PKC, its substrate and its
scaffold alters between inactive and active intermediate states,
thus allowing phosphorylation of the substrate, even in the
presence of active-site PKC inhibitors. Accordingly, scaffolds
are able to precisely control PKC activity and to confer
functional selectivity.

Concluding remarks
As PKC activity has to be precisely balanced at every
subcellular location, its regulation is under intricate control.
This control of the spatial and temporal dynamics of
PKC signalling comes from regulation through various
mechanisms, such as phosphorylation, binding to second
messengers, conformational changes and binding to scaffolds.
Perturbation of any of these mechanisms of control can lead
to pathophysiological states. In fact, dysregulation of PKC
activity has been observed in many diseases including cancer
[47], diabetes [48] and neurodegenerative diseases such as
Alzheimer’s [49]. Changes in expression of PKC scaffolds,
such as RACK1, as opposed to PKC itself, have also been
found to dysregulate PKC signalling in Alzhemier’s disease
[50]. Therefore understanding all mechanisms through which
PKC is regulated is key to developing novel therapeutics
to restore PKC activity to physiological levels and to
appropriate subcellular locations.
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