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The target of rapamycin (TOR), as part of the rapamycin-

sensitive TOR complex 1 (TORC1), regulates various as-

pects of protein synthesis. Whether TOR functions in this

process as part of TORC2 remains to be elucidated. Here,

we demonstrate that mTOR, SIN1 and rictor, components

of mammalian (m)TORC2, are required for phosphoryla-

tion of Akt and conventional protein kinase C (PKC) at the

turn motif (TM) site. This TORC2 function is growth factor

independent and conserved from yeast to mammals. TM

site phosphorylation facilitates carboxyl-terminal folding

and stabilizes newly synthesized Akt and PKC by inter-

acting with conserved basic residues in the kinase

domain. Without TM site phosphorylation, Akt becomes

protected by the molecular chaperone Hsp90 from

ubiquitination-mediated proteasome degradation. Finally,

we demonstrate that mTORC2 independently controls

the Akt TM and HM sites in vivo and can directly phos-

phorylate both sites in vitro. Our studies uncover a novel

function of the TOR pathway in regulating protein folding

and stability, processes that are most likely linked to the

functions of TOR in protein synthesis.
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Introduction

The target of rapamycin (TOR) is an evolutionarily conserved

Ser/Thr protein kinase that forms two distinct protein com-

plexes that regulate cell growth in response to a variety of

environmental cues (Wullschleger et al, 2006). In mammals,

in addition to mammalian TOR (mTOR), the conserved

components of these complexes consist of mLST8 and raptor

for mTOR complex 1 (mTORC1), and mLST8, rictor and SIN1

for mTORC2. In the presence of growth-promoting signals

such as nutrients and growth factors, mTOR controls growth

by upregulation of protein synthesis (Mamane et al, 2006;

Wullschleger et al, 2006). TORC1 regulates translation

initiation by phosphorylating the translational regulator

and AGC (protein kinases A/G/C) kinase family member,

S6K (yeast SCH9), at the conserved hydrophobic motif (HM)

site (Mamane et al, 2006; Jacinto and Lorberg, 2008).

Mammalian and yeast TOR also regulates the biogenesis of

ribosomes, which constitute the basic protein synthesis ma-

chinery (Martin et al, 2006). The highly conserved function

of TOR in protein synthesis, primarily attributed to TORC1, is

inhibited by the immunosuppressive and potential anti-

cancer drug rapamycin. The function of TORC2 is less

well-defined, but in both yeast and mammals, TORC2 is

involved in actin cytoskeleton reorganization and cell survi-

val (Loewith et al, 2002; Jacinto et al, 2004, 2006; Sarbassov

et al, 2004). These TORC2 functions may also be linked to

the regulation of other AGC kinases (Sarbassov et al,

2004; Kamada et al, 2005; Jacinto et al, 2006). Mammalian

(m)TORC2 is required for phosphorylation of the HM site of

the AGC kinases, Akt and protein kinase C-a (PKCa) (Hresko

and Mueckler, 2005; Sarbassov et al, 2005; Jacinto et al, 2006;

Shiota et al, 2006; Yang et al, 2006). Phosphorylation of the

HM site increases their catalytic activity (Newton, 2003) and

may also affect kinase interaction with substrates (Holz et al,

2005; Jacinto et al, 2006). The HM is part of the carboxyl-

terminal (C) tail of AGC kinases. This kinase family is char-

acterized by the presence of a unique interaction between the

C-tail and the catalytic domain to further regulate kinase

activity (Kannan et al, 2007). The mammalian AGC kinases

become optimally activated by phosphorylation at the activa-

tion loop (A-loop) in the catalytic domain by PDK1 and at

the HM site of the carboxyl-terminus (Newton, 2003).

Accumulating evidence indicates that mTOR, either as part

of mTORC1 or mTORC2 mediates phosphorylation of several

AGC kinases at the HM site (Jacinto and Lorberg, 2008). HM

phosphorylation of S6K and Akt is mediated by mTORC1 and

mTORC2, respectively, and occurs in response to growth

stimuli (Hara et al, 1998; Hresko and Mueckler, 2005;Received: 30 January 2008; accepted: 28 May 2008
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Sarbassov et al, 2005; Jacinto et al, 2006). HM phosphorylation

of PKCa and the yeast YPK1/2, both shown to be mediated by

TORC2, does not seem to be responsive to growth stimuli,

however (Kamada et al, 2005; Guertin et al, 2006).

Another highly conserved region in the carboxyl-terminus

of AGC kinases is the turn motif (TM). Most AGC kinases are

phosphorylated at a conserved residue in this motif (Hauge

et al, 2007). Structural and in vitro studies done on PKC and

PKA suggest that phosphorylation at the TM site stabilizes

the kinase core (Bornancin and Parker, 1996; Yonemoto et al,

1997). Whether this is also true for Akt is unclear (Alessi

et al, 1996; Bellacosa et al, 1998; Toker and Newton, 2000).

The nature of the TM kinase and the biological significance

of this phosphorylation are poorly understood. Here, we

address the importance of TM phosphorylation in vivo. We

demonstrate that phosphorylation of Akt and conventional

(c)PKC TM site is mediated by mTORC2 and is crucial for

proper carboxyl-terminal folding and stability of Akt and

cPKC. In the absence of TM site phosphorylation, undegraded

Akt and cPKC depend on Hsp90 for stability. Our results

suggest that mTORC2 controls both the growth factor-depen-

dent HM phosphorylation and the growth factor-independent

TM phosphorylation of Akt. Our findings reveal a novel

function for mTORC2 in protein folding that may be closely

linked to the conserved function of mTORC1 in protein

synthesis.

Results

The TM phosphorylation in Akt and PKCa/ b is a novel

SIN1-controlled, growth factor-independent event

We recently found that in SIN1-deficient murine embryonic

fibroblasts (MEFS) in which mTORC2 is disrupted, Akt re-

mains active and the A-loop site (Thr308) is phosphorylated

normally in a growth factor-dependent manner (Jacinto et al,

2006). However, the growth factor-induced HM phosphoryla-

tion of Akt at Ser473 was abolished and this defect correlated

with decreased cell survival upon stress induction (Jacinto

et al, 2006). Careful examination of Akt from SIN1�/� cells

indicated an additional post-translational modification that

could not be explained by the lack of Akt HM site phosphor-

ylation. Akt from SIN1�/� cells had faster electrophoretic

mobility than in wild-type cells even without A-loop and HM

phosphorylation, suggesting that this mobility shift is not due

to their absence (Figure 1A). This mobility shift was not

altered using different growth conditions. To determine if this

modification is phosphorylation, wild-type cellular extracts

were phosphatase-treated. To exclude phosphorylation of the
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Figure 1 Identification of the TM phosphorylation in Akt and PKCa/b as a novel SIN1-regulated, growth factor-independent event. (A) Akt
from either starved or growth factor-stimulated SIN1-deficient cells migrates faster than its counterpart in wild-type cells on an SDS–PAGE gel.
Wild-type and SIN1�/� MEFs were grown in complete medium (medium), or starved of serum overnight and amino acids for 1 h (starved), or
starved then restimulated with insulin for 30 min as indicated. Total cellular extracts were prepared for immunoblot analysis for total Akt and
phosphorylated Akt at Thr308 in the activation loop (p-Akt A-loop) and at Ser473 in the HM (p-Akt HM). (B) The faster migrating Akt band in
SIN1-deficient cells is due to a defective phosphorylation unrelated to the A-loop or HM site phosphorylation. Wild-type and SIN1�/� MEFs
were starved as described in 1A. Total cellular extracts were prepared and treated with or without lambda protein phosphatase (l-PPase) for
30 min at 30 1C before analysis of total Akt and phospho-Akt as described in panel A. (C) Sequence alignment of the TM region of various
members of AGC kinases in yeast, Drosophila and mammals. Underlined residue indicates the phosphorylation site in the TM. Numbering is
based on human sequences except as indicated; D.m., Drosophila melanogaster; S.c., Saccharomyces cerevisiae. (D) TM phosphorylation of Akt
and PKCa/bII is defective in SIN1�/� cells. SIN1�/� MEFs were infected with a control (SIN1�/� vector) or HA–SIN1 (SIN1�/� HA–SIN1)
retroviral expression vectors as indicated. Total cell extracts were prepared from starved or starved then insulin stimulated wild-type MEFs or
retroviral-infected cells as indicated and analysed by immunoblotting for total Akt, PKCa and phospho-Akt and phospho-PKCa/bII. ERK2 and
PKCy levels were used as loading control.
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A-loop and HM sites that normally occurs in the presence of

serum, extracts from starved cells were used. As a control,

cellular extracts from SIN1�/� cells were also phosphatase-

treated. In the absence of Thr308 and Ser473 phosphoryla-

tion, phosphatase treatment led to increased Akt mobility in

wild-type cells that paralleled the migration pattern in SIN1�/�

cells (Figure 1B). Thus, defective phosphorylation accounts

for the increased Akt mobility in SIN1�/� cells.

In addition to the A-loop and HM site phosphorylation, Akt

is phosphorylated at other sites, although their significance is

less well understood (Alessi et al, 1996; Bellacosa et al,

1998). By mass spectrometry, we found that phosphorylation

of Ser124, a reported constitutively phosphorylated site in

Akt (Alessi et al, 1996), was not abolished in SIN1�/� cells

(data not shown). We therefore examined the TM site,

Thr450, which was also shown to be constitutively phos-

phorylated (Alessi et al, 1996; Bellacosa et al, 1998) and

highly conserved from yeast to mammals (Figure 1C)

(Newton, 2003; Jacinto and Lorberg, 2008).

We examined the phosphorylation of the TM site in Akt

and cPKC, which display very similar sequence around the

TM. Indeed, we found that TM site phosphorylation of Akt

and PKCa/bII are abolished in SIN1�/� cells (Figure 1D and

Supplementary Figure 1). The phospho-PKCa/bII TM

(Ser638/641) antibody also recognized a 60 kDa protein,

which we confirmed to be Akt (Supplementary Figure 1).

Unlike Akt HM phosphorylation, which is induced upon

insulin stimulation, TM phosphorylation is present even

under starved conditions. Upon re-expression of SIN1, the

phosphorylation of the TM sites of both Akt and PKCa/bII in

SIN1�/� MEFs was restored (Figure 1D). These results reveal

that SIN1 is essential for both Akt and PKCa/bII TM site

phosphorylation and provide the first genetic evidence for a

mechanism that controls TM site phosphorylation.

The TM phosphorylation of Akt and PKCa/b requires

mTORC2 components

Turn motif phosphorylation of Akt and PKCa/bII is insensi-

tive to various growth factors and stress inducers such as

tunicamycin, heat shock, etoposide, peroxide, UVand gamma

irradiation (data not shown). Pharmacological inhibition of

the PI3K pathway (by wortmannin) or mTORC1 (by rapamy-

cin) up to 8 h also had no significant effect on the TM site

phosphorylation (Figure 2A and data not shown). Likewise,

the PI3K inhibitor Ly294002 and MAPK inhibitors U0126,

SB203580, SP600125, CDK inhibitor roscovitine, cyclosporin

A and FK506 had no obvious effect on TM phosphorylation

(data not shown). Taken together, these results suggest that
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Figure 2 The TORC2 components are essential for Akt and PKCa/bII TM phosphorylation. (A) The TM phosphorylation of Akt and
conventional PKC is insensitive to short-term treatment with rapamycin and wortmannin. WT and SIN1�/� MEFs were starved as described
in Figure 1A, then treated with vehicle (�), rapamycin (50 nM) or wortmannin (100 nM) for 30 min, followed by insulin stimulation for another
30 min as indicated. Phosphorylation and total protein levels were determined by immunoblotting as described in Figure 1B. (B) The mTORC2
component rictor is essential for the Akt and PKCa/bII TM site phosphorylation. WTand rictor�/� MEFs were starved, stimulated and analysed
for phosphorylation and total protein levels by immunoblotting as described in panel A. ERK2 was assayed as a loading control.
(C) Knockdown of mTOR expression attenuates the Akt and PKCa/bII TM phosphorylation. NIH3T3 cells were transfected with varying
amounts (0.2, 0.6 and 1.0mg) of either vector control or mTOR-siRNA-expressing plasmid DNA as indicated. Total cell extracts were prepared
and phosphorylation was analysed by immunoblotting. All lanes from each antibody-blotted panel come from the same blot. (D) Disruption of
mTORC2 by prolonged rapamycin treatment decreases TM phosphorylation. Wild-type MEFs were incubated with rapamycin (Rap; 100 nM) for
the indicated number of hours (h). SIN1 was immunoprecipitated and associated mTOR and rictor were detected by immunoblotting. Total
extracts were analysed for phosphorylation and for total protein levels by immunoblotting.
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the TM phosphorylation is stable and insensitive to

transient inhibition of a number of kinases including

PI3K, MAPKs, CDKs and mTORC1. The TM site phos-

phorylation of novel PKCd/y and PKA was not abolished

in SIN1�/� cells (Figure 2A and data not shown); it is

noteworthy that these kinases do not have the consensus

Thr-Pro-sequence, which is found in Akt (Drosophila and

mammals), mammalian cPKC and yeast PKC1 (Figure 1C) in

their TM. These results suggest that the SIN1-mediated

TM site phosphorylation is specific to a subset of the AGC

family kinases.

To further determine if TM phosphorylation is mTORC2

dependent, we examined if rictor also mediates the TM

phosphorylation of Akt and PKCa/bII. Using rictor�/� cells,

essentially the same defects in Akt and PKCa/bII TM

phosphorylation were observed similar to SIN1�/� cells

(Figure 2B). TM phosphorylation of novel PKCd/y and PKA

was also not affected in rictor�/� cells (Figure 2B and data

not shown), further suggesting that mTORC2 components

specifically mediate TM phosphorylation of Akt and cPKC.

Next, we silenced mTOR expression with siRNA and found

that knockdown of mTOR decreased the TM site phosphoryla-

tion of both Akt and PKCa/bII (Figure 2C). As it was reported

that prolonged rapamycin treatment could inhibit the assembly

of mTORC2 in many cell types (Sarbassov et al, 2006), we

examined if TM phosphorylation is affected under this condi-

tion. Treatment of MEFs, PC3 and Jurkat cells with rapamycin

for 24 h or longer, which dissociated mTOR binding from SIN1,

caused a dramatic decrease in TM phosphorylation of Akt and

PKCa/bII (Figure 2D and Supplementary Figure 2). The faster

Akt migration in SDS–PAGE, which accompanies the loss of TM

phosphorylation, is also evident upon prolonged rapamycin

treatment (Figure 2D). HM phosphorylation of Akt was also

diminished under these conditions. As previously reported for

the HM site (Sarbassov et al, 2006), the TM phosphorylation of

Akt in HEK293T and HeLa cells was also resistant to the

prolonged rapamycin treatment most likely due to the remain-

ing intact mTORC2 found in these cells (Supplementary Figure

2). Taken together, these results further indicate that mTORC2 is

required for TM phosphorylation.

The TM phosphorylation mediated by TORC2 is highly

conserved

As Akt and PKC have orthologues in lower organisms, we

examined if the TORC2-dependent TM site phosphorylation is

conserved. We conditionally depleted the SIN1 orthologue

AVO1 in Saccharomyces cerevisiae (Loewith et al, 2002). TM

phosphorylation of PKC1 was significantly decreased upon

depletion of AVO1, but not of KOG1, a TORC1 component

(Supplementary Figure 3A). These results indicate that simi-

lar to mammalian PKCa/bII, the TM phosphorylation of yeast

PKC1 requires TORC2. To further address the conserved

function of TORC2 in Akt and PKC TM site phosphorylation,

we also knocked down Drosophila SIN1 (dSIN1) by siRNA.

Knockdown of dSIN1, but not dRaptor, a key component

of dTORC1, decreased the phosphorylation of dAkt at

Thr484, the equivalent TM site in dAkt (Supplementary

Figure 3B), further demonstrating that the TORC2-dependent

TM phosphorylation of dAkt is also conserved in Drosophila.

Collectively, these data demonstrate that SIN1-mediated

TM phosphorylation is conserved in yeast, flies and

mammals.

Protein levels of Akt and PKCa are diminished in the

absence of SIN1 or rictor

Previous studies indicated that TM site phosphorylation of

cPKC is important for protein maturation, and in its absence,

cPKCa was unstable in vitro (Bornancin and Parker, 1996;

Edwards et al, 1999). As the mTOR function in protein

synthesis is evolutionarily conserved, we postulated that

mTORC2 may regulate events that are closely linked to

protein synthesis, such as folding and stabilization of newly

synthesized proteins. Since improperly folded proteins are

known to be unstable and prone to degradation (Hartl and

Hayer-Hartl, 2002), we determined the protein levels of Akt

and PKCa in several independently generated MEF cell lines

from either wild-type or from the SIN1�/� littermate em-

bryos. To appreciate subtle changes in protein expression, we

loaded less but equal amounts of lysates from wild-type and

SIN1�/� cells. Compared with the wild-type cell lines where

the levels of Akt and PKCa were highly uniform, the levels of

Akt and PKCa in all the SIN1�/� cell lines varied considerably

but were consistently reduced compared with wild-type cells

(Figure 3A). A significant decrease in PKCa protein level was

also observed in rictor�/� cells (Figure 2B) consistent with

previous studies (Guertin et al, 2006), suggesting that the

decreased Akt and cPKC protein level is an mTORC2-related

phenotype.

To further examine whether the absence of TM phospho-

rylation may lead to degradation, we determined if Akt in

SIN1�/� cells could have increased ubiquitination, a mechan-

ism that leads to proteasome turnover. Indeed, there was

increased ubiquitination in SIN1�/� cells of exogenous Akt,

which was more evident in the presence of the proteasome

inhibitor MG132 (Figure 3B). Endogenous Akt ubiquitination

also became more pronounced in SIN1�/� cells upon MG132

pretreatment (Figure 3C). Taken together, these results in-

dicate that the lack of TM phosphorylation predisposes Akt

towards degradation through ubiquitination and proteasome-

mediated turnover.

The maturation of PKCa is defective in the absence

of SIN1

We next examined if maturation of cPKC, which was reported

to require TM phosphorylation (Edwards et al, 1999), is

defective in SIN1�/� cells. By pulse-chase analysis, we

found that, whereas newly synthesized PKCa from wild-

type cells underwent maturation as depicted by the appear-

ance of a slower migrating band with a half-life time of

10 min, PKCa maturation in SIN1�/� cells was severely im-

paired with a much slower kinetics (Figure 3D). The slower

migrating form of PKCa corresponds to phosphorylated TM

and HM sites, while the fast-migrating species is unpho-

sphorylated at the carboxyl-terminus (Keranen et al, 1995).

The TM phosphorylation of PKCa was also proposed to

induce a closed conformation, such that in its absence,

PKCa was rapidly degraded in vitro (Bornancin and Parker,

1996). To further investigate how lack of TM phosphorylation

renders Akt and PKCa unstable in vivo, we determined the

half-life of Akt and PKCa in wild-type and SIN1�/� cells.

Surprisingly, we found that upon inhibition of translation

using cycloheximide, Akt and PKCa in either SIN1�/� or

rictor�/� cells had a half-life comparable with wild-type

cells (Supplementary Figure 4). These results led us to

speculate that some of the TM site unphosphorylated Akt
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and PKCa may elude the proteasome pathway and are

protected in cells under normal growing conditions.

Akt and PKCa in SIN1�/� cells are protected by Hsp90

As heat shock proteins such as Hsp90 can protect newly

synthesized and/or improperly folded kinases (Caplan et al,

2007), we examined if disrupting Hsp90 function would

increase susceptibility of Akt and PKCa to proteasome de-

gradation in SIN1�/� cells. We used three different strategies

to disrupt Hsp90 function. First, we used a well-characterized

pharmacological inhibitor of Hsp90, 17-(Allylamino)-17-

demethoxygeldanamycin (17-AAG). Although the 17-AAG

treatment of wild-type cells had no significant effect on Akt

and PKCa levels for up to 8 h, there was a dramatic decrease

in Akt and PKCa levels in SIN1�/� and rictor�/� cells as early

as 2 h following treatment (Figure 4A and 4B; data not

shown). Akt and PKCa protein levels were rescued upon

expression of HA–SIN1 in SIN1�/� MEFs, indicating that the

17-AAG-induced reduction is specific to the absence of SIN1

(Figure 4A). Second, we used a cell-permeable peptide in-

hibitor of Hsp90 that could disrupt Hsp90 interaction with

Akt (Miao et al, 2008). Third, we used a dominant-negative

Hsp90 mutant to inhibit the Hsp90 pathway (Miao et al,

2008). The inhibitory peptide or expression of the dominant-

negative Hsp90 both significantly decreased Akt levels in the

SIN1�/� MEFs (Supplementary Figure 5). As Akt degradation

is mediated through the ubiquitin pathway (Figure 3B and C),

we would anticipate that Hsp90 inhibition should further

augment Akt ubiquitination in SIN1�/� cells. Indeed, Akt

ubiquitination was significantly increased in SIN1�/� cells

upon 17-AAG treatment (Figure 4C). Taken together, these

results demonstrate that Akt and PKCa from SIN1�/� cells,

which lack TM phosphorylation, are highly dependent on

Hsp90 for stability and to prevent proteasome-mediated

degradation.

To further address how the absence of TM phosphorylation

may affect Akt and PKCa stability, we induced protein

destabilization and misfolding by heat shock treatment. We

reasoned that under sustained heat stress, the Hsp90 pathway

becomes overwhelmed and thus may lose its ability to rescue

Akt/cPKC in SIN1�/� cells. Heat shock attenuated Akt and

PKCa levels significantly in SIN1�/� cells but only marginally

in wild-type cells (Figure 4D). We also observed that both the

endogenous Akt and exogenous HA–Akt bound more Hsp90

upon heat shock in SIN1�/� cells (Supplementary Figure 6).

Despite increased Hsp90 binding, endogenous Akt underwent

degradation when heat shock was sustained (Supplementary

Figure 6). These results further suggest that the TM site

phosphorylation-defective Akt that escaped proteasome de-

gradation was protected by Hsp90 in SIN1�/� cells under

normal growing conditions.

We then asked what would happen to protein levels of Akt

and PKCa in wild-type cells if we inhibit both mTOR and

Hsp90. Combined 17-AAG and prolonged rapamycin treat-

ment led to a considerable decrease in Akt protein level at

longer time points (Figure 4E). Remarkably, combined treat-

ment with 17-AAG, rapamycin and knockdown of mTOR

expression diminished Akt expression to similar levels seen

in 17-AAG-treated SIN1�/� cells (Figure 4E). The expression

of PKCa was also significantly decreased by combined Hsp90
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the ubiquitination pathway in SIN1�/� cells. WTand SIN1�/� MEFs were transfected with myc-ubiquitin or co-transfected with myc-ubiquitin
and HA–Akt-expressing plasmid DNA. After 36 h, transfected cells were either untreated or treated with MG132 (10mM) for another 12 h before
harvest. Exogenous HA–Akt (B) or endogenous Akt (C) were immunoprecipitated and further analysed for ubiquitination by immunoblotting
with an anti-myc antibody. Immunoprecipitated Akt or HA–Akt levels were also determined. (D) Defective PKCa maturation in SIN1�/� MEFS.
WT and SIN1�/� MEFs were metabolically labelled with [35S] methionine/cysteine for 7 min and chased at different time points (min) as
indicated before harvesting. Endogenous PKCa was immunoprecipitated from detergent-solubilized lysates with an anti-PKCa antibody,
separated by SDS–PAGE, and visualized by autoradiography (top panel). Newly synthesized, unphosphorylated PKCa is indicated by the dash
(�); phosphorylated and mature PKCa is indicated by a double asterisk (**). The bottom panel shows an immunoblot analysis of total PKCa.
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and mTOR inhibition/knockdown. These results suggest that

when mTORC2-mediated TM phosphorylation is disrupted,

Hsp90 becomes essential for Akt and cPKC stability.

The TM phosphorylation is specifically required for Akt

and PKCbII protein stability

To further investigate if it is the specific lack of TM phos-

phorylation in Akt that caused instability of Akt, we

determined how mutation of Thr450 to Ala could affect Akt

stability in wild-type cells. Expression of Thr450Ala Akt in

wild-type MEFs phenocopied the wild-type Akt in SIN1�/�

cells by displaying an augmented susceptibility to the

17-AAG-induced degradation (Figure 5A). In sharp contrast,

wild-type Akt or Ser473Ala mutant Akt remained stable

under the same conditions. Consistently, the TM site mutants

were highly ubiquitinated in wild-type cells resembling that

of Akt in the SIN1�/� cells (Figure 5B). Furthermore, the

17-AAG-induced and ubiquitin-mediated Akt degradation

could be inhibited by the proteasome inhibitor MG132

(Supplementary Figure 7). As compensating phosphorylation

by adjacent Ser/Thr sites was reported to occur in the

absence of TM site phosphorylation in PKCbII (Edwards

et al, 1999), we also examined the effect of combined

mutation of Thr450 with the adjacent Thr443 to alanine in

Akt. Although total HA–Akt levels were comparable in the

single versus double mutant (Figure 5A), we observed more

pronounced ubiquitination of the double mutant (Figure 5B).

Similar to Akt from SIN1�/� cells (Figure 5C), the TM site

mutants also bound more Hsp90 than wild-type Akt

(Figure 5D). Thus, the lack of TM phosphorylation specifi-

cally renders Akt unstable and dependent on Hsp90 for

protection.

We also examined if mutation of the TM site in PKCbII can

confer instability upon inhibition of Hsp90. As adjacent Ser/

Thr sites can compensate for the absence of phosphorylation

at the TM site, we used a PKCbII TM site mutant that contains
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SIN1�/� or HA–SIN1-reconstituted SIN1�/� MEFs (A) or rictor�/� MEFs (B) were either untreated (0) or treated with 17-AAG (1 mM) for 4 or
8 h before harvest, followed by immunoblotting analysis for Akt, PKCa and PKCy levels. ERK2 and tubulin expression was assessed as a loading
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(E) Combined inhibition of mTOR and Hsp90 diminishes Akt and PKCa protein levels. Wild-type cells were transfected with vector (control) or
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adjacent Ala mutations at the compensating sites (Edwards

et al, 1999). Upon 17-AAG treatment, protein levels of the TM

mutant, but not the HM mutant, Ser660Ala, were decreased

(Figure 5E). Taken together, these results indicate that phos-

phorylation at the TM is specifically required for protein

stability and that Hsp90 can stabilize the unphosphorylated

Akt and cPKC.

Complementary interactions between a conserved

basic patch at the catalytic domain and the

phospho-threonine in the TM have an important

function in the stabilization of Akt and cPKC

Why did the lack of TM site phosphorylation cause an

instability specifically to Akt and cPKC in SIN1�/� and

rictor�/� cells? Is there a structural basis for this TM site

phosphorylation-mediated Akt and cPKC stabilization? The

TM region is localized in a mobile loop and undetected in the

previous crystal structure of PKBb (Akt2) (Yang et al, 2002).

However, electrostatic surface potential calculation revealed

that an area at the catalytic domain close to the missing TM

loop (marked by a square in Figure 6A and B) contains

intensive positive charges. This basic patch is mainly con-

tributed by K165, R184, R224 (human Akt2 numbering).

Interestingly, these residues are conserved in several AGC

kinases including the conventional and atypical PKCs, but

only partially conserved in PKA and novel PKCs (Figure 6C

and data not shown).

Structural modelling of the TM loop with phosphorylated

T451 (human Akt2 numbering, and equivalent to T450 in

human Akt1 used throughout this study) showed that the

negatively charged phosphate group forms strong electro-

static interactions with the conserved basic patch in the N-

lobe of the catalytic domain (Figure 6A and B). It is likely that

either during or immediately following Akt translation, the

newly synthesized Akt is phosphorylated at the TM site,

which may tether the entire TM loop to the basic patch

through a ‘knot’-like interaction as described above

(Figure 6B), and consequently stabilizes the C-terminal tail.

In the absence of TM phosphorylation, the C-terminal tail

might be more flexible, hence more accessible by the protein

degradation machinery, as we have shown in the above

analysis. We would therefore expect that abrogation of the

interactions between the conserved basic patch and phos-

phorylated TM site should result in destabilization of Akt

protein.

To test our model, we mutated these basic residues to

methionine and determined the effect on Akt protein stability.

We found that despite the presence of TM site phosphoryla-
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tion (Supplementary Figure 8), the K163M, K182M or R222M

mutants (human Akt1 numbering) expressed in wild-type

cells displayed a very similar stability defect as the Akt TM

mutant (Figure 6D). In the presence of 17AAG, all these Akt

mutants, but not wild-type Akt or Akt S473A mutant, ex-

hibited dramatic degradation in wild-type cells comparable

with that of wild-type Akt in SIN1�/� cells (Figures 5A and

6D). Additionally, each of these mutants bound more Hsp90

compared with wild-type Akt (Figure 6E). These results

strongly suggest that the complementary charge–charge in-

teractions between these conserved basic residues at the

catalytic domain and the phospho-threonine in the TM

have an important function in the folding and stability of

Akt, and most likely conventional PKC as well, which dis-

plays both sequence and structure conservations to Akt.

The Akt TM phosphorylation is controlled

independently of its HM phosphorylation

Turn motif site phosphorylation occurs in starved cells when

neither A-loop nor HM sites are phosphorylated, suggesting

that TM phosphorylation is not dependent on phosphoryla-

tion of either of these two sites. However, as phosphorylation

of both the TM and HM sites is defective in the SIN1�/� cells,

one possibility for abolished HM phosphorylation in stimu-

lated cells could be due to the lack of TM phosphorylation.

We therefore determined if the Akt HM phosphorylation

could occur in wild-type cells expressing TM site mutant

Akt. In the Akt TM site mutants, HM phosphorylation was

still induced by growth factors, similar to wild-type Akt

(Figure 7A). These results demonstrate that the TM and

HM phosphorylation of Akt are two independent events.

A potential function of SIN1 is to bring Akt to mTOR or

prolong their interaction to allow TM or HM phosphorylation,

as SIN1 and Akt can interact (Jacinto et al, 2006). Akt

activation also requires membrane translocation (Bellacosa

et al, 1998). We then determined if constitutive membrane

targeting of Akt may override the requirement for the

mTORC2-mediated HM and TM phosphorylation. We ex-

pressed a myristylated form of Akt (Myr-Akt) and examined

if it can rescue the TM or HM phosphorylation in SIN1�/�

cells. Interestingly, we found that membrane targeting of Akt

in SIN1�/� cells is clearly unable to restore TM phosphoryla-

tion but could partially rescue HM phosphorylation

(Figure 7B). As mTORC2 assembly is disrupted in SIN1�/�

cells, we asked whether autophosphorylation may account

for the observed HM phosphorylation of Myr-Akt in SIN1�/�

cells (Toker and Newton, 2000). Upon expression of a kinase

inactive allele of Akt (Myr-Akt-KD) in SIN1�/� cells, very

little HM phosphorylation was observed, indicating that in

the absence of SIN1, the HM site of Myr-Akt undergoes

autophosphorylation (Figure 7B). This residual autopho-

sphorylation is resistant to prolonged rapamycin treatment

(Figure 7C). In contrast, the majority of HM phosphorylation

of both wild-type Akt and Myr-Akt can be inhibited by

prolonged rapamycin treatment in wild-type cells

(Figure 7C). As expected, non-myristylated Akt-KD mutant

expressed in SIN1�/� cells displayed no phosphorylation at

the TM and HM sites (data not shown). These results confirm

that HM phosphorylation mainly occurs through mTORC2,

although residual autophosphorylation could occur when Akt

is artificially targeted to the membrane.

mTORC2 phosphorylates the TM and HM sites of Akt

in vitro

Finally, we addressed if mTORC2 can phosphorylate the TM

site in vitro. We used dephosphorylated GST–Akt1 from

HEK293 cells (see Materials and Methods) as the substrate

for in vitro kinase assays. We immunoprecipitated mTORC2

with an anti-SIN1 antibody and used this as the kinase

source. In the presence of SIN1 immunoprecipitates, TM
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charged, which is ideal for accommodating a phosphorylated
threonine. (B) Electrostatic interactions between pT451 from the
TM and K165, R184, R224 in the N-lobe. (C) Sequence alignment of
residues surrounding K165, R184, R224 and T451 for selected
human AGC kinases. Note that T451 is not conserved in PKA and
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phosphorylation of GST–Akt1 was observed (Figure 7D, lane

2). No TM phosphorylation was detected in the absence of

either SIN1 immunoprecipitates (Figure 7D, lanes 1 and 4) or

GST–Akt1 (lane 3). Confirming previous studies (Sarbassov

et al, 2005; Yang et al, 2006), the HM site of Akt can be

robustly phosphorylated by a SIN1-associated kinase
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phosphorylation is not a prerequisite for the HM site phosphorylation of Akt. Wild-type MEFs were stably infected with a control vector
(Vector) or with retroviral expression vectors for HA–Akt (WT) or mutant (T450A or T443A/T450A) to express comparable and close to
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immunoblotting. (B) Membrane-targeted Akt is not phosphorylated at the TM site but undergoes partial phosphorylation at the HM site.
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(Figure 7D). The HM site appears to be more efficiently

phosphorylated than the TM site, suggesting that the assay

conditions used are more favourable towards HM site phos-

phorylation. These results indicate that a SIN1-associated

kinase(s) can phosphorylate these two distinct Akt sites.

As mTOR, but not SIN1 or rictor, possesses kinase activity,

we then analysed if mTOR can directly phosphorylate the Akt

HM and TM sites. We compared the kinase activity of HA-

tagged mTOR with a kinase-dead mutant of HA–mTOR (KD).

Whereas both wild-type and KD mTOR pulled down similar

amounts of SIN1 and rictor, wild-type mTOR, in contrast to

KD mTOR, can more efficiently phosphorylate the HM and

TM sites (Figure 7E). Taken together, these results provide

convincing evidence that Akt TM and HM phosphorylation

are mediated and likely undergo direct phosphorylation in

vivo by mTORC2.

Discussion

Early studies on PKC and PKA have suggested that phosphor-

ylation at the TM is important for their stabilization

(Bornancin and Parker, 1996; Yonemoto et al, 1997;

Edwards et al, 1999; Messerschmidt et al, 2005; Grodsky

et al, 2006). The regulatory mechanism and biological sig-

nificance of the TM site phosphorylation in Akt and cPKC

were previously only speculative. The function of this phos-

phorylation in Akt, one of the most widely studied AGC

kinases due to its oncogenic potential, has been overlooked

because of its apparently constitutive nature (Alessi et al,

1996; Bellacosa et al, 1998). We have now shown that

phosphorylation of this site is strictly dependent on the

integrity of mTORC2 and is essential for the folding and

stability of Akt and cPKC. Without TM phosphorylation,

Akt and cPKC are partially protected by Hsp90 for stability.

Lack of TM phosphorylation of endogenous Akt and cPKC

has not been observed in vivo before. Thus, our present study

reveals a new and unique regulatory mechanism for a subset

of the AGC family kinases by mTORC2 (see Akt regulation as

modelled in Figure 8).

Using molecular remodelling and in vivo studies, we

demonstrate that the interaction of the phosphate on the

TM site with the three highly conserved basic residues in the

catalytic region functions to fold and stabilize Akt (Figure 6).

A similar structural model was recently proposed, but TM

phosphorylation was suggested to synergize with HM phos-

phorylation to enhance catalytic activity of a number of AGC

kinases (Hauge et al, 2007). This is in contrast to our findings

that demonstrate an important function of TM phosphoryla-

tion primarily for protein stability. Our results concur with

previous studies wherein TM site mutation of Akt and PKC

did not affect their in vitro catalytic activity (Bornancin and

Parker, 1996; Bellacosa et al, 1998; Toker and Newton, 2000)

(data not shown). Further studies should reveal how regula-

tion of Akt stability can affect its activity towards its numer-

ous cellular targets.

The TM and HM phosphorylation of Akt clearly require

mTORC2, but necessitate different temporal and spatial con-

ditions. Whereas TM phosphorylation remains stable when

growth stimuli are withdrawn, HM phosphorylation requires

growth factors. Growth factor stimulation is critical for PI3K

activation that leads to Akt recruitment to the membrane

where it undergoes HM phosphorylation. Interestingly, arti-

ficial membrane targeting of Akt in mTORC2-disrupted cells

could partially rescue HM, but not TM, phosphorylation,

highlighting the importance of Akt membrane localization

for HM phosphorylation. This partial rescue of HM phosphor-

ylation in SIN1�/� cells was not through mTOR but was

actually due to autophosphorylation (Figure 7B and C).

However, the observed mTORC2-independent autophosphor-

ylation in this case was minimal (Figure 7B), and it is unlikely

that under physiological conditions it could bypass the

requirement for mTORC2. In wild-type cells, the majority of

HM and TM phosphorylation of Myr-Akt can be inhibited by

prolonged rapamycin treatment, further indicating that HM
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and TM site phosphorylation are primarily mediated by

mTORC2. This possibility is further supported by the evi-

dence that mTOR (as part of mTORC2) could exert an effect as

a direct kinase for the TM and HM sites (Figure 7D–E).

The consensus sequence surrounding the TM (Thr-Pro-

Pro-Asp) of Akt and cPKC is distinct from the HM (Phe-Ser-

Tyr). The TM consensus sequence is also present in dAkt

and partially conserved in the budding yeast PKC1. In addi-

tion to a function of budding yeast TORC2 in regulating PKC1

activity through the Rho GTPases, we show here that it may

also mediate TM site phosphorylation (Supplementary

Figure 3). TORC2 also controls TM phosphorylation of the

S. cerevisiae AGC kinase YPK2 in vitro (Kamada et al, 2005)

and the S. pombe Gad8p (Matsuo et al, 2003). Our study

demonstrates that mTOR kinase activity is required for TM

phosphorylation. Thus, mTOR has likely preserved its

primitive, non-growth factor-inducible function in mediating

TM phosphorylation from yeast to mammals. Although we

could not rule out the existence of another Pro-directed

kinase for TM site phosphorylation, pharmacological inhibi-

tion of other known Pro-directed kinases such as MAPKs

and CDKs did not significantly inhibit TM phosphorylation

(data not shown). Supporting mTOR as a kinase for a Thr-Pro

motif, the phosphorylation sites in the bona fide

mTOR substrate, 4E-BP, are also followed by a Pro

(Gingras et al, 2001).

How can mTORC2 similarly mediate phosphorylation of

the Akt TM and HM sites that do not respond to the same

cellular stimulus? One model would be that the proper

localization and/or conformation of Akt, and likely PKC as

well, determines when it will be regulated or phosphorylated

by mTORC2. A similar model was proposed for the PDK1

phosphorylation of the activation loop of several AGC kinases

that are regulated by various stimuli (Biondi, 2004). If mTOR

were the kinase for both sites, this would imply that mTOR

intrinsic activity does not have to be regulated by these

various signals. This also implies that mTORC2 may be

distinctly regulated in different cellular compartments.

Identification of specific components that may regulate

mTORC2 in these compartments would provide a mechanism

for this divergent regulation. The immediate appearance

(visible at 3 min) of mature, phosphorylated PKC in our

pulse-chase experiment hints that the TM site phosphoryla-

tion may occur during or immediately following translation

(Figure 3D). Therefore, although mTORC2-mediated HM

phosphorylation occurs post-translationally as a result of

Akt localization to the membrane, it is possible that

mTORC2-mediated TM site phosphorylation of Akt and

cPKC may occur at the translational machinery.

Modulation of folding and stability of AGC kinases by

mTOR and molecular chaperones is perhaps a fundamental

mechanism for AGC kinase function. Hsp90 and Hsp70 can

prolong the kinase activity of Akt and PKCbII, respectively

(Sato et al, 2000; Gao and Newton, 2002). Whether TM site

phosphorylation (Ser371) of the mTORC1-regulated S6K con-

trols folding and stability of this kinase would need to be

evaluated, but this site is also mitogen-induced and can

be phosphorylated by mTOR in vitro (Moser et al, 1997;

Saitoh et al, 2002). The co-regulation of protein synthesis

and folding is highly conserved among prokaryotes and

eukaryotes and involves association of chaperones with the

protein synthesis machinery (Hartl and Hayer-Hartl, 2002).

The TOR complexes may have evolved to co-regulate the

protein synthesis machinery and co/post-translational fold-

ing of eukaryotic AGC kinases. As TM site phosphorylation

may stabilize the structure of the majority of AGC kinases

(Hauge et al, 2007), future studies should uncover the exact

mechanism for the target specificity by mTORC2.

Finally, given that Akt, PKC, Hsp90 and mTOR are tapped

as important drug targets, our findings provide rationale for

how the control of protein stability of Akt and PKC by the

mTOR pathway and molecular chaperones could be exploited

to develop more specific and efficacious drugs against cancer

and other growth-related diseases. Combination therapy that

target mTOR and the chaperone pathways should lead to

more efficient growth inhibition of cancer cells.

Materials and methods

Plasmid constructs, antibodies, reagents
HA-tagged Akt constructs were obtained from D Alessi (University
of Dundee) (wt, S473A, Myr-Akt) and A Toker (Harvard University)
(T450A, T443A/T450A). Wild-type or mutant HA-Akt ORFs were
each subcloned into the retroviral vector pMIGW at the BglII and
ERI sites. GST–Akt was obtained from D Sarbassov (UTMDACC).
HA-Akt K to M mutants and Myr-Akt-KD (K179M) were constructed
by using a PCR-directed mutagenesis method. HA-PKCbIIAAA
mutant was obtained by subcloning PKCbIIAAA (Edwards et al,
1999) into pCI-HA vector. pMIGW-HA-SIN1 and siRNA constructs
were prepared as described previously (Jacinto et al, 2004, 2006).
Myc-ubiquitin was obtained from X Feng (Baylor). HA-mTOR WT
and KD were prepared as described previously (Dennis et al, 2001).
All other reagents were obtained as described in Supplementary
data.

Cell culture, stimulation and harvest
Murine embryonic fibroblasts were cultured, stimulated and
harvested as described previously (Jacinto et al, 2006). Rictor�/�

MEFs were obtained from KL Guan (UCSD). MEFs were infected
with retrovirus expressing either HA–Akt or HA–SIN1 as described
previously (Jacinto et al, 2006) and in Supplementary data.

Kinase assay
GST–Akt1 was prepared as described in Supplementary data.
Kinase assay reactions were performed following the methods
described previously (Sarbassov et al, 2005) and in Supplementary
data.

Pulse-chase analysis
Murine embryonic fibroblasts were starved for 30 min in DMEM
lacking methionine and cysteine, then pulsed for 7 min with 35S-
methionine/cysteine labelling mix. Cells were chased with normal
DMEM supplemented with 5 mM methionine and cysteine. PKCa
was immunoprecipitated with PKCa monoclonal antibody from BD
Transduction (San Jose, CA, USA), then fractionated by SDS–PAGE.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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