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2000.—Individual protein kinase C (PKC) isozymes have been implicated in
many cellular responses important in lung health and disease, including
permeability, contraction, migration, hypertrophy, proliferation, apoptosis,
and secretion. New ideas on mechanisms that regulate PKC activity, in-
cluding the identification of a novel PKC kinase, 3-phosphoinositide-depen-
dent kinase-1 (PDK-1), that regulates phosphorylation of PKC, have been
advanced. The importance of targeted translocation of PKC and isozyme-
specific binding proteins (like receptors for activated C-kinase and caveo-
lins) is well established. Phosphorylation state and localization are now
thought to be key determinants of isozyme activity and specificity. New con-
cepts on the role of individual PKC isozymes in proliferation and apoptosis
are emerging. Opposing roles for selected isozymes in the same cell system
have been defined. Coupling to the Wnt signaling pathway has been de-
scribed. Phenotypes for PKC knockout mice have recently been reported.
More specific approaches for studying PKC isozymes and their role in cell
responses have been developed. Strengths and weaknesses of different
experimental strategies are reviewed. Future directions for investigation
are identified.

pulmonary disease; proliferation; apoptosis; 3-phosphoinositide-depen-
dent kinase-1; receptor for activated C-kinase; transgenic mice

HOW INDIVIDUAL ISOZYMES of an enzyme family contribute
to the regulation of diverse cell responses is an impor-
tant area of signal transduction research. One of the
most complex and important of these enzyme families
is protein kinase C (PKC).
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IMPORTANCE OF PKC ISOZYMES IN LUNG DISEASE!

Remarkable heterogeneity exists within the PKC
signal transduction pathway (Fig. 1). Twelve different
isozymes have now been described (29). Individual
isozymes have been implicated in many cellular re-
sponses important in both normal lung function and
the pathogenesis of pulmonary disease. These re-
sponses include permeability, contraction, migration,
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Fig. 1. Heterogeneity within the protein kinase (PK) C signal trans-
duction pathway. The isozymes are indicated in the box. They can be
divided into subgroups based on structure and cofactor require-
ments: conventional («, By, B, ), novel (3, €, m, 0), atypical (¢, v), and
recently described (p., v).

hypertrophy, proliferation, apoptosis, and secretion (1,
4, 12-15, 27, 38-40, 53, 55, 65, 71). These studies
strongly suggest that PKC isozymes are important in
clinical disorders like pulmonary edema, adult respi-
ratory distress syndrome, interstitial lung disease,
asthma, and pulmonary hypertension. In this sympo-
sium, the focus is mainly on two cell responses, prolif-
eration and apoptosis (18, 23, 25, 41, 46, 48, 49, 68),
that play a major role in the development and eventual
regression of the abnormal structural changes ob-
served in these clinical settings.

Why is this area of investigation important? If we
can better understand how individual isozymes con-
tribute to the pathogenesis of lung diseases, then we
are more likely to find settings where these isozymes
will emerge as viable therapeutic targets (18, 24, 44).
In this symposium, we also examine the role of selected
PKC isozymes in an array of pathological settings
outside the lung, including cardiac ischemia (25), car-
cinogenesis (47), drug-induced cell injury (56), and
behavior abnormalities (31, 33). The integrated ap-
proaches used and novel findings shown should provide
additional insights into how PKC isozymes may con-
tribute to normal lung biology and the pathogenesis of
several important pulmonary disorders.

CURRENT APPROACHES FOR INVESTIGATION
OF PKC ISOZYMES?

Many complementary approaches for investigating
the biology of PKC are now available. The first is to test
how diverse stimuli activate individual PKC isozymes
(34). In the lung, these stimuli include inhaled irri-
tants; mechanical forces; hypoxia; mitogens, vasocon-
strictors, or vasodilators; inflammatory mediators; and
matrix proteins (12, 15, 16, 38, 39, 53, 54). The phos-
phorylation state of isozymes is a critical determinant
of activity (6, 11, 19, 20, 36). Expression level and
activity may or may not correlate. Isozymes can be
present in an inactive form. Traditionally, isozyme
activation is detected by measuring intracellular
translocation to membrane or cytoskeleton. Transloca-
tion to the membrane can be detected by Western
blotting and measurement of catalytic activity after
subcellular fractionation or immunostaining of intact
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cells. Sensitivity of the assay is dependent on the
affinity of the antibody; thus a negative result does not
necessarily mean an isozyme is not present. Specificity
of antibody preparations is variable; therefore, appro-
priate controls (blocking peptides, purified standards)
are needed. Increasingly, immunoprecipitation-based
kinase assays are being used to evaluate the activity of
individual isozymes (56). Antibodies that detect the
activated (i.e., phosphorylated) form of a few PKC
isozymes have recently been described (51) but are not
yet commercially available.

The second approach is to relate the expression pat-
tern of PKC to cell phenotype. The level of any one
isozyme in the cell represents a balance between ex-
pression and degradation. This balance may be altered
in settings of cellular stress or injury (39, 47, 71).
Techniques available include Northern and Western
blotting with isozyme-specific probes to measure levels,
immunostaining with confocal imaging to localize, and
comparative and overexpression studies to explore po-
tential roles in cell function. A major concept emerging
here is the importance of localization as a determinant
of isozyme specificity (3, 17, 45, 52, 58). Receptors for
activated C-kinase (RACKs) and caveolins contribute
to an elaborate level of intracellular organization and
compartmentalization of signaling molecules like PKC.
The localization facilitates cross talk between different
signaling intermediates, targeted substrate phosphor-
ylation, and regulation of catalytic activity. Analysis of
comparative studies can be complicated when the cells
of interest grow at different rates, as is often the case.
Isozyme expression can change as a function of cell
cycle and density; these variables need to be factored
into the experimental design and interpretation. Over-
expression of one isozyme can alter the levels of others
(69). Which isoform is responsible for the change in
phenotype may be difficult to discern without more
experiments (32). These findings suggest that interde-
pendence between isozymes exists and may be impor-
tant (567). This concept is not yet well appreciated.

To further implicate individual isozymes in specific cell
responses, an array of agonist and antagonist strategies
with varying degrees of specificity have been developed.
These techniques include pretreatment for 4—24 h with a
high concentration of phorbol ester (13, 71), application of
inhibitors targeting either the catalytic or regulatory
domain (26), or translocation itself (25, 61) and the intro-
duction of antisense RNA or dominant negative proteins
via transfection or adenoviral infection (8, 59, 70). Be-
cause all of these strategies have limitations, it is usually
best to use complementary approaches. An approach
needs to be validated when there are questions of inhib-
itor specificity and when cell type specific effects have
been observed, as is the case with phorbol ester-induced
downregulation. The downregulatory effects of pretreat-
ment with phorbol ester vary depending on isozyme and
cell type (13, 71). A new family of phorbol ester binding
proteins (B2-chimaerin) also needs to be considered when
interpreting the data. Inhibitors like Go-6976 that target
the catalytic domain are competitive with ATP. With this
compound and similar derivatives, the ICs, for purified
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Fig. 2. Schematic representation of the 2 modes of regulation of PKC: 1) phosphorylation triggered by 3-phospho-
inositide-dependent protein kinase-1 (PDK-1) and 2) allosteric control mediated by the lipid second messenger
diacylglycerol (DG). Unphosphorylated PKC is associated with the membrane where it is phosphorylated by PDK-1
on its activation loop. The immediate consequence of this phosphorylation is the autophosphorylation at two key
positions in the carboxy terminus (C1 and C2). The phosphorylated enzyme is then released into the cytosol where
it is maintained in an inactive conformation by binding an autoinhibitory sequence, the pseudosubstrate.
Membrane recruitment in response to diacylglycerol and phosphatidylserine (PS) provides the energy to expel the
pseudosubstrate sequence from the substrate-binding cavity, thus activating PKC for downstream signaling. In
addition to the mechanisms discussed here, localization by protein-protein interactions plays a key role in
presenting PKC to its upstream and downstream regulators. C, carboxy terminus; N, amino terminus; nos. in

circles, phosphorylation motifs.

PKC may be lower than for PKC in intact cells because
intracellular ATP concentrations may be higher than
those present in the original in vitro assays (13, 26).
Myristolation allows introduction of pseudosubstrate
peptides into viable cells (21). New strategies have re-
cently been described to facilitate permeabilization of
peptide translocation inhibitors (18, 61). These isozyme-
specific antagonist strategies complement other pharma-
cological approaches.

The final, more integrated approach is the use of iso-
lated organ preparations and whole animal models.
Eventually, one would like to use both pharmacological
strategies and emerging transgenic models (18, 37, 42,
62, 64). Drug specificity and dosing are key issues for the
pharmacological studies. Inhibitors can help prove that
the phenotype observed with a null transgenic mouse is
due to the lack of the gene product and not the conse-
quence of a developmental change. The availability of
conditional knockout models can also help address this
issue. The use of transgenic models to study intracellular
kinases in the lung has been slowed by the limited op-
tions currently available for organ-specific targeting of
gene manipulations (coupled to the surfactant protein C
promoter; specific for only one lung cell type, the type 2
cell). In summary, isolated organ preparations and whole
animal studies are powerful approaches but require care-
ful interpretation because the drugs being used probably
have more effects than we think and manipulation of
PKC genes can potentially alter levels of other key cell
intermediates.

NEW IDEAS ON MECHANISMS THAT REGULATE PKC
ACTIVITY?

PKC is regulated by two sequential, and equally
critical, mechanisms: 1) phosphorylation triggered by
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the recently discovered 3-phosphoinositide-dependent
kinase (PDK)-1 and 2) binding to the lipid second
messenger diacylglycerol (Fig. 2). Each mechanism
regulates the structure, subcellular localization, and
function of PKC. This contribution focuses on recent
advances in understanding the regulation of PKC by
its upstream kinase.

PDK-1 is the upstream kinase for the activation loop
of PKCs. The first event in the regulation of PKC is
phosphorylation of newly synthesized protein at three
conserved positions within the catalytic domain. The
first rate-limiting phosphorylation occurs on a segment
at the entrance to the active site referred to as the
activation loop. Negative charge at this phosphoryla-
tion site regulates the function of diverse members of
the kinase superfamily, including both tyrosine kinase
and Ser/Thr kinases. Biochemical data amassed over
the past decade established that this site (Thr®°® in
PKC-BII) is regulated by a heterologous kinase; how-
ever, the identification of this upstream kinase eluded
detection until recently. The discovery in 1997 of
PDK-1 as the upstream kinase for the activation loop of
the related Akt/protein kinase B (see Ref. 20 for addi-
tional details) begged the question as to whether
PDK-1 could also be the upstream kinase for the PKCs.
In 1998, three laboratories (11, 20, 36) reported that,
indeed, PDK-1 phosphorylated the activation loops of
conventional, novel, and atypical PKCs. PDK-1 has
now been shown to play a pivotal role in cell signaling
by phosphorylating the activation loop of diverse mem-
bers of the AGC family of kinases, including p70S6
kinase, PKN/PRK, p90-Rsk, and serum glucocorticoid-
dependent kinase in addition to the PKC isozymes and
Akt.

Biochemical and cell biological studies have revealed
that phosphorylation by PDK-1 triggers the rapid in-
corporation of phosphate at two positions on the car-
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boxy terminus: a turn motif conserved among all PKCs
(Thr%*! in PKC-BII) and a hydrophobic phosphoryla-
tion motif (Ser®®® in PKC-BII) conserved in conven-
tional and novel PKCs. This motif'is present in atypical
PKCs except that an acidic residue, Glu, is present
instead of the phosphorylatable residue. The hydro-
phobic motif has attracted considerable attention be-
cause it is found in a number of other kinases, notably
Akt and S6 kinase, and phosphorylation at this site
appears to be tightly coupled to kinase activation.
Because phosphorylation of this site in Akt, like that of
the activation loop, is serum sensitive, extensive efforts
have been devoted to identifying a potential mitogen-
sensitive kinase, tentatively referred to as PDK-2.

The PDK-2 site is regulated by intramolecular auto-
phosphorylation. Here we show that there is no PDK-2
for the conventional PKCs. Rather, intramolecular au-
tophosphorylation, triggered by the phosphorylation of
the activation loop by PDK-1, regulates the hydropho-
bic site (6). Autophosphorylation is also shown to be the
regulatory mechanism for the hydrophobic site on Akt
(66). Thus there is only one upstream kinase for the
PKCs, PDK-1.

PKC is activated by engaging its two-membrane-
targeting modules on the membrane. PKC is activated
by generation of diacylglycerol, which recruits PKC to
the membrane. Membrane binding is achieved by two
separate membrane-binding modules, the C1 and C2
domains. The former domain binds diacylglycerol (or
phorbol esters) and phosphatidylserine, and the latter
binds anionic phospholipids in a Ca®*-dependent man-
ner. The binding energy resulting from engaging these
domains on the membrane contributes to release of the
pseudosubstrate from the substrate-binding cavity.
This stretch of sequence occupies the substrate-bind-
ing cavity when PKC is inactive and is expelled from
the site on activation.

In summary, PKC is under the coordinated regula-
tion of a protein kinase linked to the phosphoinositide
3-kinase signaling pathway and by diacylglycerol. Un-
derstanding how PDK-1 is regulated is central to un-
derstanding the cellular regulation of PKC. In addition
to the phosphorylation discussed here, the activity of
PKC isozymes is fine-tuned by tyrosine phosphoryla-
tion and, in some cases, induced by oxidative stress as
well as isozyme-specific Ser/Thr phosphorylation. Thus
phosphorylation presents a new facet in our under-
standing of the intricate regulation of PKC family
members.

OPPOSING ROLE FOR PKC ISOZYMES IN PROTECTION
FROM ISCHEMIC INJURY*

PKC isozymes are homologous enzymes in which the
functional specificity is determined by their subcellular
localization (Fig. 3). After activation, each isozyme is
translocated to a unique subcellular site where it is
anchored by specific proteins, collectively termed
RACKs (45). In the past few years, Souroujon and
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Fig. 3. Schematic diagram showing that substrate specificity of PKC
is determined by the localization of individual PKC isozymes after
activation. Isozyme-specific localization is due to binding of the
activated isozymes to their corresponding anchoring proteins,
termed receptors for activated C-kinase (RACKs).

Mochly-Rosen (61) have generated isozyme-specific in-
hibitors that interfere with protein-protein interac-
tions of individual PKC isozymes and their correspond-
ing RACKs. Dorn et al. (18) and Ron and Mochly-Rosen
(58) have also generated isozyme-selective agonists of
PKC that inhibit intramolecular interaction in PKC.
This effect allows activation and binding of individual
isozymes with their RACKs. These inhibitors and ac-
tivators are short peptides that are introduced into
cells by a variety of methods, most recently by conju-
gating them to a cell permeable peptide derived from
the Antennapedia protein (e.g., see Ref. 18). Using
these tools, we then determined the role of individual
PKC isozymes in the response of cardiac myocytes to is-
chemia.

Previous work (54, 60) demonstrated that protection
from ischemic damage can be induced by subjecting the
heart to a short period of ischemia immediately before
the more prolonged insult. This form of protection,
termed preconditioning, was thought to be mediated by
activation of PKC. We found that cardiac myocytes
contain at least six different PKC isozymes (17) but
that preconditioning results in activation of only two
isozymes, PKC-8 and PKC-e (25). With the isozyme-
specific inhibitors and activators that we developed,
the role of PKC-¢ in this process was determined.

Introduction of a PKC-e-selective inhibitory peptide,
€V1-2, into neonatal cardiac myocytes prevented their
protection that is induced by preconditioning (25). In
contrast, inhibitors of other isozymes did not prevent
cardioprotection by preconditioning (25). These data
indicate that PKC-e activation is required for the pro-
tective effect induced by preconditioning. To determine
whether activation of PKC-e is sufficient to produce
protection from ischemia-induced cell death, we used
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the PKC-e-selective translocation agonist WYeRACK. In-
troduction of ~5 nM of this eight-amino acid peptide
resulted in ~70% reduction in ischemia-induced cell
death of neonatal and freshly isolated adult cardiac
myocytes (18). The protection induced by VeRACK was
inhibited by the PKC-e-selective antagonist eV1-2 as
well as by inhibitors of the catalytic activity of PKC
(18). We then introduced VeRACK as a transgene in
mouse hearts under the regulation of a-myosin heavy
chain, which is expressed selectively in the heart and
only after birth. After prolonged no-flow ischemia,
there was a faster functional recovery of the hearts
from the YeRACK transgenic mice compared with that
from nontransgenic littermates (18). Moreover, >60%
reduction in the amount of cardiac damage, deter-
mined by release of a cardiac-specific cytosolic enzyme,
creatine phosphokinase, was observed (18). Together,
these data indicate that activation of PKC-e¢ is required
and sufficient to produce protection from ischemic
damage in isolated cells and in transgenic mice.

Recent work with a PKC-3-selective agonist and an-
tagonist demonstrated that PKC-5 mediates damage
induced by ischemia. Therefore, opposing effects of
individual PKC isozymes, unmasked by using isozyme-
selective tools, can be induced by the same cell stimu-
lus. Our data also suggest that a PKC-e-selective ago-
nist will produce a better cardiac protection than
isozyme nonselective agonists of PKC. Future studies
will determine whether WeRACK or compounds that
mimic YeRACK could be used as therapeutics in treat-
ing ischemic heart disease in humans.

IMPORTANCE OF PKC ISOZYMES IN CELL
PROLIFERATION®

PKC has been implicated in the control of cellular
proliferation, differentiation, and survival in many tis-
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Fig. 4. The role of PKC-BII in colonic
epithelial hyperproliferation and carci-
nogenesis induced by the chemical
azoxymethane (AOM). Schematic dia-
gram demonstrates the role of PKC-BII
in the Wnt signaling cascade. Frz, friz-
zled protein; Dsh, disheveled protein;
GSK-3pB, glycogen synthase kinase-3p;
P, phosphorylation; APC, adenoma-
tous polyposis coli protein; Tecf, T-cell
factor; Lef, lymphocyte enhancer-bind-
ing factor. (Modified from Ref. 47.)

sue types including the colonic epithelium (49). Indi-
rect evidence also suggests a role for PKC activity in
colon carcinogenesis. However, the specific role of in-
dividual PKC isozymes in this process has not been
directly assessed. Here we report on the role of PKC-
BII in colonic epithelial cell proliferation and progres-
sion to colon carcinogenesis. We have analyzed the
pattern of expression of PKC isozymes during the pro-
cess of colon carcinogenesis in vivo using a mouse
carcinogen model. Immunoblot and quantitative RT-
PCR analysis were used to compare protein and mRNA
levels for PKC isozymes in normal mouse colonic epi-
thelium, aberrant crypt foci (ACF; preneoplastic le-
sions of the colon), and colon carcinomas. A dramatic
increase in PKC-BII protein was observed in both ACF
and colon tumors relative to normal colonic epithelium.
In contrast, PKC-a and PKC-BI (a splicing variant of
PKC-BII) protein was slightly decreased in ACF and
dramatically reduced in colon tumors relative to nor-
mal colonic epithelium. Quantitative RT-PCR analysis
revealed that PKC mRNA levels did not correlate with
PKC protein levels, indicating that expression of PKC
isozymes is likely regulated at both the transcriptional
and translational/posttranslational levels. Hocevar et
al. (30) and Murray et al. (46) have demonstrated that
PKC-BII is required for cellular proliferation of human
leukemia cells in culture. To investigate PKC-BII func-
tion in the colonic epithelium in vivo, Murray et al. (47)
generated transgenic mice that express elevated PKC-
BII in the intestinal epithelium. Transgenic PKC-BII
mice exhibit hyperproliferation of the colonic epithe-
lium and an increased susceptibility to azoxymethane-
induced ACF and colon tumor formation (47). Further-
more, transgenic PKC-BII mice exhibit elevated colonic
B-catenin levels and decreased glycogen synthase ki-
nase-33 activity, indicating that PKC-BII stimulated
the Wnt-adenomatous polyposis coli (APC)-B-catenin
proliferative signaling pathway in vivo (Fig. 4).
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Our results demonstrate that specific, reproducible
changes in PKC isozyme expression occur during colon
carcinogenesis and that PKC isozyme expression pat-
terns are controlled by a combination of transcriptional
and nontranscriptional mechanisms. Similar changes
in PKC isozyme expression were observed in human
colon tumors, demonstrating the relevance of these
findings to human disease. Elevated expression of
PKC-BII in transgenic mice led to hyperproliferation of
the colonic epithelium and increased susceptibility to
colon carcinogenesis. Taken together, these data dem-
onstrate that elevated PKC-BII is an early event in
colon carcinogenesis that plays a direct promotive role
in colonic epithelial cell proliferation and colon carci-
nogenesis, possibly through activation of the APC-j3-
catenin signaling pathway.

IMPORTANCE OF PKC ISOZYMES IN APOPTOSIS®

Apoptosis is a genetically programmed form of cell
death that is important in development and for the
removal of tumor cells and cells injured by chemicals
and radiation. Apoptosis can be initiated via cell sur-
face death receptors such as Fas and tumor necrosis
factor-a or by agents that cause cell damage. Chemi-
cals and irradiation induce apoptosis via a mitochon-
drial-dependent pathway (Fig. 5). Specific changes in
the mitochondrial membrane result in the release of
cytochrome ¢, the subsequent activation of caspase-9,
and activation of effector caspases such as caspase-3,
-6, and -7 (63). Activated effector caspases dismantle
the cell through cleavage of cell proteins, resulting
ultimately in DNA fragmentation and cell death. The
Bcl-2 family of proteins plays a major role in regulating
the mitochondrial events, with proteins such as Bcl-2
and Bcl-xL suppressing death, whereas Bax, Bad, and
other proteins induce cell death (35).

PKC plays a fundamental role in the regulation of
cell proliferation and differentiation, and recent stud-
ies (5, 7, 48, 68) suggest that it is also involved in the
regulation of cell survival. Early approaches to defin-
ing the role of PKC in apoptosis relied on activation of
PKC by phorbol 12-myristate 13-acetate or inhibition
by pharmacological agents. This work (41) showed that
activation of PKC may be either proapoptotic or anti-
apoptotic depending on the cell type. More recently,
studies (5, 7, 22, 48, 56, 68) have begun to define
isoform-specific functions of PKC in the apoptotic path-
way. PKC isoforms that appear to be antiapoptotic
include PKC-a, PKC-BII, and PKC-e and the atypical
isoforms PKC-\Mu and PKC-{. For example, expression
of a dominant negative form of PKC-«a induces apopto-
sis in COS-1 cells (68) and in salivary gland epithelial
cells (Matassa A and Reyland ME, unpublished data),
suggesting that PKC-a may be a survival factor (Fig.
5). Likewise, overexpression of PKC-BII protects small
cell lung cancer cells against c-myc-induced apoptosis
(5). The atypical PKC isoforms PKC-\v and PKC-{, are
downstream effectors of phosphoinositide 3-kinase and
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Fig. 5. The role of PKC isozymes in chemical and radiation-induced
apoptosis. A diverse group of agents, including DNA-damaging
agents and cell toxins, induce a mitochondrial-dependent apoptotic
pathway. Release of cytochrome (cyto) ¢ from the mitochondria and
binding to apoptotic protease activating factor-1 (Apaf-1) result in
activation of caspase-9, which, in turn, activates downstream effec-
tor caspases. Inhibition of PKC-a can activate, whereas inhibition of
PKC-3 can suppress, this pathway. In addition, cleavage and activa-
tion of PKC-3 by caspase may serve to amplify specific events in the
apoptotic pathway.

are required for mitogenic activation in oocytes and
fibroblasts, suggesting that they may also transduce a
survival signal. In agreement with this, Murray and
Fields (48) showed that PKC-\\u protects human K562
leukemia cells from apoptosis. Berra et al. (7) have
shown that exposure of cells to apoptotic stimuli such
as ultraviolet radiation leads to a dramatic decrease in
the activity of the atypical PKC isoforms PKC-{ and/or
PKC-ML.

In contrast to the antiapoptotic isoforms, PKC-8 is
emerging as a common intermediate in the apoptotic
pathway induced by chemicals and irradiation (Fig. 5).
Proteolytic activation of PKC-3 by caspases releases a
catalytically active fragment in cells induced to un-
dergo apoptosis by DNA-damaging agents (22). Activa-
tion of PKC-3 by caspase cleavage may serve to amplify
downstream events in the apoptotic pathway because
expression of the catalytic fragment alone is sufficient
to induce caspase activation and apoptosis in a variety
of cell types. However, studies from our laboratory (56)
indicate that PKC-8 activity is also required for apo-
ptosis at a point upstream of caspase activation. Inhi-
bition of PKC-3 with rottlerin or by expression of a
dominant negative PKC-3 protein suppresses caspase
activation and DNA fragmentation in salivary gland
epithelial cells, indicating that PKC-3 is required for
these events (56). Furthermore, expression of a domi-
nant negative mutant of PKC-3 is sufficient to inhibit
phorbol ester-induced apoptosis in prostate cancer
cells, which does not result in the caspase-directed
cleavage and activation of PKC-8 (23). Thus PKC-3
may function at two or more points in the apoptotic
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pathway. These functions of PKC-8 may be distinct,
wherein activated full-length PKC-38 plays a role in the
initiation of apoptosis and the cleavage and activation
of PKC-8 by caspase result in the amplification of
apoptosis.

The identification of both pro- and antiapoptotic iso-
forms suggests that PKC may function as a molecular
sensor, promoting cell survival under favorable condi-
tions and executing the death of abnormal or damaged
cells.

LESSONS FROM PKC KNOCKOUT MICE"

Of the 12 PKC isozymes identified thus far, PKC-v,
-B, -€, and -6 have been mutated to generate null mice
by homologous recombination. Neural, immunologic,
and endocrine phenotypes have been reported. PKC-vy-
null mice were the first to be generated by Abeliovich et
al. (2). Because this isozyme is exclusively expressed in
the central nervous system, all phenotypes involved
central nervous system function. The first one de-
scribed was a deficit in spatial learning observed dur-
ing a Morris water maze probe test (2). The deficit was
mild and could be overcome by intensive training. It
was associated with impaired contextual fear condi-
tioning. Both findings suggest hippocampal dysfunc-
tion and were associated with impaired long-term po-
tentiation in CA1l hippocampal pyramidal neurons
after high-frequency stimulation of CA3 axons (2). A
subsequent study by the same laboratory disclosed a
second phenotype of gait ataxia associated with persis-
tent multiple climbing fiber synapses on cerebellar
Purkinje cells due to impaired synapse elimination
during development (10).

Other laboratories have identified additional pheno-
types in PKC-y mice. Malmberg et al. (42) found that
these mice showed normal pain responses but de-
creased hyperalgesia after mechanical or inflammatory
peripheral nerve injury. Martin et al. (43) observed
that PKC-y is expressed by a subset of neurons in
lamina II of the dorsal spinal cord and is induced by
chronic inflammation. Furthermore, nerve injury in-
creases the levels of neuropeptide Y and neurokinin-1
receptor immunoreactivity and decreases substance P
receptor immunoreactivity in the dorsal horn of the
spinal cord, but these responses are diminished in
PKC-y-null mice. Taken together, these findings sug-
gest that PKC-y is important in the neural plasticity
within the spinal cord after nerve injury that contrib-
utes to neuropathic pain.

In a different set of studies, Harris et al. (28) found
that PKC-y-null mice show a decreased sensitivity to
ethanol-induced hypothermia and to the sedative ef-
fects of ethanol as measured by the duration of drug-
induced loss of righting reflex (LORR). In a subsequent
study, these mice failed to develop tolerance to ethanol-
induced LORR (9). The decreased sensitivity to ethanol
was lost when the mice were backcrossed onto a
C57BL/6J background but could be recovered by breed-
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ing the C57BL/6J mice with 129SvEvTac mice. These
findings indicate the polygenic nature of ethanol re-
sponses and demonstrate the need to control for effects
of genetic background in studies with null mice.

PKC-B mice were initially found to demonstrate de-
ficiencies in B-cell function and impaired humoral im-
mune responses (37). More recent work (50) has docu-
mented deficits in mast cell degranulation and
interleukin-6 production. It is not yet certain if these
changes are due to developmental effects of the null
mutation or loss of the isozyme in adult tissues. Re-
cently, PKC-B-null mice have been found to show a
modest increase in insulin-stimulated translocation of
GLUT-4 glucose transporters and in glucose transport
in some tissues (62). This can be rescued in part by
transgenic expression of PKC-BI, suggesting that it is
due to the loss of that isozyme. PKC-6-null mice were
recently reported to show striking deficits in adult
T-cell signaling, particularly in T-cell receptor-initi-
ated activation of nuclear factor-«B (64). This deficit
was not evident in thymocytes, suggesting that it re-
sulted from a loss of the isozyme in adult T cells. These
findings suggest that it may be possible to develop
inhibitors of PKC-6 that could be used as immunosup-
pressants.

My laboratory recently generated PKC-e-null mice.
Although these mice display normal responses to nox-
ious thermal and mechanical stimuli, they show de-
creased nociceptor sensitization after local injection of
epinephrine (33). Similar findings were obtained in
rats injected locally with a specific peptide inhibitor of
PKC-¢, confirming that responses observed in null mice
are due to the loss of PKC-e function in mature neu-
rons. This inhibitor also inhibited epinephrine-induced
enhancement of tetrodotoxin-resistant sodium current
in rat dorsal root ganglion neurons. When injected
locally, the inhibitor also decreased carrageenan-in-
duced hyperalgesia in rats. These findings suggest that
PKC-e inhibitors may prove useful in the treatment of
pain states. In another study, our laboratory (31) found
that PKC-e-null mice are supersensitive to the sedative
effects of ethanol, barbiturates, and benzodiazepines
and that this correlates with enhanced sensitivity of
vy-aminobutyric acid, receptors to the agonist proper-
ties of these drugs in vitro. This increase in sensitivity
to ethanol was associated with decreased voluntary
alcohol consumption. This supports other findings in
rats and humans, indicating an inverse correlation
between alcohol consumption and sensitivity to acute
alcohol intoxication. These studies suggest that inhib-
itors of PKC-e may reduce alcohol consumption and
prove useful in the treatment of alcoholism.

FUTURE DIRECTIONS?®

The advances in PKC signaling described here reveal
at least some of the novel experimental approaches now
available for investigation of this remarkably complex
enzyme family. They also underscore the importance of

"Presented by R. O. Messing.

8Presented by E. C. Dempsey.
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PKC in lung health and disease and the feasibility of
selecting PKC isozymes as therapeutic targets. As this
area of signaling has matured, it also provides insights
into how best to study multiple isozymes in other signal
transduction cascades. Immediate challenges in the pul-
monary field include 1) finding more efficient and less
toxic ways to transiently apply isozyme-specific antago-
nist strategies to more biologically relevant primary cul-
tures of epithelial, endothelial, smooth muscle, and fibro-
blast cells that are known to be heterogeneous and to
rapidly change in culture; 2) more carefully validating
the effects of putative PKC antagonists used in isolated
lung preparations and whole animal models; and 3) de-
veloping strategies for targeting gene mutations to addi-
tional types of cells in the lung. Other compelling ques-
tions raised and areas for future investigation are the
following:

1) How is the activity and expression of PDK-1 reg-
ulated in lung cells? Are there developmental or differ-
entiation-associated differences in activity or expres-
sion of PDK-1? Is there heterogeneity in activity or
expression of PDK-1 among different subtypes of lung
cells? What effect do relevant forms of cellular stress
like hypoxia, hyperoxia, shear stress, and cigarette
smoke have on PDK-1 function?

2) Are there PKC isozyme-specific differences in sus-
ceptibility to H,0O4-induced tyrosine phosphorylation
in lung cells? What is the biological importance of this
form of activation in the lung?

3) What regulates expression of PKC binding pro-
teins (i.e., including RACKs and caveolins) in lung
cells? Is their expression dependent on developmental
stage, state of differentiation, or subpopulation? Is
their expression altered by relevant forms of cellular
stress? If so, by what mechanism? What are the struc-
tural determinants of their interaction with and regu-
lation of PKC isozymes?

4) In a given intracellular milieu, what are the pri-
mary determinants of function for a PKC isozyme? And
how can a change in cell type or shift in cell phenotype
after injury lead to a change in the function of a PKC
isozyme?

5) What factors regulate the balance between expres-
sion, phosphorylation, and degradation of individual
isozymes in lung cells? Do individual isozymes contrib-
ute to the regulation of their own expression and/or the
expression of other isozymes? Do changes in levels of
individual isozymes occur under conditions of cellular
stress and do they contribute to change in phenotype?
And by what mechanism?

6) What effect does targeted disruption of relevant
PKC isozyme genes have on susceptibility to cellular
stress or injury in vivo? Do some isozymes serve a
protective role? Do others increase susceptibility or
extent of injury?

7) Can pharmacological and molecular approaches to
inhibit or activate selected PKC isozymes attenuate or
reverse pathological conditions like pulmonary edema,
lung injury, asthma, and pulmonary hypertension in
vivo?
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